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Cooperative Navigation and Guidance of a Micro-Scale Aerial Vehicle
by an Accompanying UAV using 3D LiDAR Relative Localization
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Abstract— A novel approach for cooperative navigation and
guidance of a micro-scale aerial vehicle by an accompanying
Unmanned Aerial Vehicle (UAV) using 3D Light Detection and
Ranging (LiDAR) relative localization is proposed in this paper.
The use of 3D LiDARs represents a reliable way of environment
perception and robust UAV self-localization in Global Naviga-
tion Satellite System (GNSS)-denied environments. However,
3D LiDARs are relatively heavy and they need to be carried
by large UAV platforms. On the contrary, visual cameras
are cheap, light-weight, and therefore ideal for small UAVs.
However, visual self-localization methods suffer from loss of
precision in texture-less environments, scale unobservability
during certain maneuvers, and long-term drift with respect
to the global frame of reference. Nevertheless, a micro-scale
camera-equipped UAV is ideal for complementing a 3D LiDAR-
equipped UAV as it can reach places inaccessible to a large UAV
platform. To gain the advantages of both navigation approaches,
we propose a cooperative navigation and guidance architecture
utilizing a large LiDAR-equipped UAV accompanied by a
small secondary UAV carrying a significantly lighter monocular
camera. The primary UAV is localized by a robust LiDAR
Simultaneous Localization and Mapping (SLAM) algorithm,
while the secondary UAV utilizes a Visual-Inertial Odometry
(VIO) approach with lower precision and reliability. The LiDAR
data are used for markerless relative localization between the
UAVs to enable precise guidance of the secondary UAV in the
frame of reference of the LiDAR SLAM. The performance of
the proposed approach has been extensively verified in simula-
tions and real-world experiments with the algorithms running
onboard the UAVs with no external localization infrastructure.
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I. INTRODUCTION

The research of autonomous UAVs operating in indoor
environments has recently experienced a tremendous surge in
popularity. Possibilities for the employment of autonomous
UAVs are being explored, e.g., in firefighting [1], [2],
Search and Rescue (SAR) [3], [4], [5], [6], documentation
of historical monuments [7], [8], inspection tasks, etc. As
there is generally no GNSS or external localization system
available in real-world indoor environments, the UAVs need
to rely on their exteroceptive sensors to localize themselves
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Fig. 1: The large primary UAV equipped with a 3D LiDAR
is navigating a smaller secondary UAV carrying a monocular
visual camera.

and perceive the environment. Multiple options of the UAV
sensory payload exist, each with its unique advantages.

One of the most reliable choices of sensors are 3D
LiDARs. LiDARs are precise, long-range, and exhibit good
performance even under no illumination and low-visibility
conditions [9]. However, they come with the cost of relatively
large weight and size. Because of their weight, their use re-
quires large UAV platforms to transport them, and such large
platforms may not be able to fly through all the tight spaces
present in real-world indoor environments. Furthermore, in
many real-world applications it is advantageous to deploy a
team of UAVs to, e.g., cover a larger area faster, but the high
cost of 3D LiDARs significantly increases the overall cost
of such a UAV fleet.

On the contrary, visual cameras are cheap, small, light-
weight, with low power consumption. A visually-localized
UAV can be very small and capable of flight through very
narrow gaps. The overall price of such a UAV is much
lower than the price of a large 3D LiDAR-equipped UAV.
The use of visual self-localization also has its disadvantages,
as it loses precision in texture-less environments and its
long-term drift is larger than in the case of 3D LiDARs.
Long-term flights then exhibit significant error in global
positioning, which is a problem in the case of SAR mis-
sions as demonstrated in the DARPA Subterranean challenge
where precise global positioning was required. Vision-aided
Inertial Navigation Systems (VINS) also suffer from scale
unboservability during constant-acceleration movement [10].
Additionally, 3D models obtained with a monocular camera
using structure from motion approaches cannot compete with
the accuracy and quality of a map constructed using a 3D
LiDAR, which is crucial for mapping and planning in an
unknown environment.

http://mrs.felk.cvut.cz/icuas2022-coop


In this paper, we propose a cooperative navigation ap-
proach synergizing the advantages of both types of sensors.
We devise a cooperative navigation architecture for a hetero-
geneous team of autonomous UAVs (see Fig. 1). The primary
UAV is equipped with a 3D LiDAR and utilizes a LiDAR
SLAM algorithm to localize itself within the surrounding
environment. The secondary UAV carries a monocular visual
camera and uses a VIO approach for its self-localization.
The 3D LiDAR data obtained by the primary UAV are then
also used for markerless relative localization of the secondary
UAV. The relative localization enables the primary UAV to
guide the secondary UAV in the frame of reference of its
more accurate and reliable LiDAR SLAM algorithm. This
approach enables building a team of robots in which one or
several larger 3D LiDAR-equipped UAVs are guiding one
or several micro-scale camera-equipped UAVs. These small
UAVs may explore the environment inside and behind gaps
too narrow for the larger UAV. Another strategy using the
proposed method can be relying on a larger 3D LiDAR-
equipped Unmanned Ground Vehicle (UGV) or UAV carry-
ing the micro-scale UAVs and releasing them when needed.
In both strategies, the 3D LiDAR-carrying vehicle ensures
global localization of the entire team and reliable short-range
deployment of smaller camera-equipped scouts.

In this work, we focus mainly on the design and evalua-
tion of the cooperative navigation architecture itself, which
enables guidance of the secondary UAV with unreliable self-
localization using the accurate and reliable frame of reference
of the primary UAV. It is worth mentioning that this approach
also enables to utilize the 3D LiDAR information about the
surrounding obstacles for guiding the secondary UAV, which
has no internal knowledge about the obstacles. Such obstacle
avoidance is beyond the scope of this paper.

A. Related work

1) UAV cooperative navigation: Cooperative navigation
approaches utilizing pairs of robots have been proposed
for improving navigation performance in outdoor GNSS-
challenging environments. A cooperative navigation ap-
proach for multiple UAVs was proposed in [11] and [12].
One or more UAVs (called “fathers” or “deputies”) are
assumed to have reliable GNSS-based localization. The other
UAV (called “son” or “chief”) receives GNSS positioning
information from the fathers and fuses it with relative posi-
tion measurements and its own navigation state to improve
its localization accuracy. Visual tracking is used to obtain
relative position measurements between the UAVs.

A similar approach is to employ a UGV to improve UAV
navigation in GNSS-challenging environments. In [13], a
cooperative localization approach for a UAV-UGV pair was
proposed. Ultra-wideband (UWB) localization was used to
obtain the UAV position relative to the UGV and the obtained
information was used to improve UAV localization accuracy.
In [14], a UGV was employed as a mobile differential
GNSS reference station, improving UAV localization accu-
racy. Similarly in [15], the authors focused on decentralized

cooperative localization of a UAV in GNSS-challenging
environment and a UGV capable of relative sensing.

In contrast to these works, we focus on the problem of
cooperative navigation in GNSS-denied environments and
we use a single sensor carried by the primary UAV for
both navigation of the primary UAV and relative localization
between the UAV pair.

2) VIO precision: We employ a monocular VIO method
for self-localization and closed-loop stabilization of the sec-
ondary UAV in its local VIO frame. VIO methods suffer
from several problems that may cause loss of precision.
As shown in [16], the VIO has four unobservable direc-
tions under general movement, corresponding to the three
Degrees of Freedom (DOFs) of global translation and the
yaw orientation. This results in a long-term drift of the
VIO estimates with respect to the global frame of reference.
In [10], it was shown that VIO methods suffer from scale
unobservability given constant or zero acceleration of the
camera-Inertial Measurement Unit (IMU) pair and from
global orientation unobservability given no rotational motion.
In [17], the authors proposed incorporating wheel odometry
measurements into the VIO estimator of a UGV and utilizing
an assumption of movement on a planar surface to remove
the unobservability and improve localization accuracy. The
authors of [18] provided a detailed analysis of aided inertial
navigation systems and arrived at a similar conclusion about
the VIO observability. Although the rigid extrinsic transfor-
mation between the IMU and the camera allows us to observe
the scale of the system, in practice the scale is still very
close to unobservable at constant acceleration. This is often
the case when exploring constrained environments where the
UAV needs to fly very slowly, almost hovering. Moreover,
the VIO can lose precision due to low amount of texture
in the environment and due to feature degeneracy in some
cases [19]. In this paper, we expect these VIO imprecisions
to manifest mainly as long-term drift and as incorrect scale
of the local VIO frame of reference. This leads to the UAV
position control pipeline undershooting or overshooting the
target position.

3) Relative localization approaches: Several different op-
tions for relative localization between UAVs exist. Due to
the motivation of our research being indoor exploration
of unknown environments and emergency response scenar-
ios, we consider only approaches independent of external
localization infrastructure. A common approach to UAV
relative localization is using a vision-based detection method.
Marker-based visual detectors utilize some sort of visually
distinct markers placed on the targets that are easy to distin-
guish from the background, such as ultraviolet (UV) LEDs in
combination with UV-sensitive cameras [20]. The use of UV
LEDs mitigates issues with environmental illumination and
allows estimation of the target’s relative position and rough
estimation of its relative orientation. Marker-less approaches
typically rely on a Convolutional Neural Network (CNN)
that is trained to detect the desired targets [21], [22]. This
approach removes the need for placing markers on the target
but typically requires knowledge of the target’s physical



dimensions to estimate its relative 3D position. Machine
learning-based approaches also require retraining if the vi-
sual appearance of the targets or the environment changes.
In general, vision-based relative localization suffers from
decreased performance under low visibility conditions and
often struggles to provide precise estimate of 3D positions
of the targets due to inaccurate distance estimation [22].
Furthermore, vision-based approaches may suffer from blind
spots depending on the number and Fields of View (FOVs)
of the employed cameras.

For relative localization, UAVs can also be equipped
with UWB ranging modules [23]. However, this technique
provides only the relative distance in the case of a pair of
UAVs. Even in the case of a formation of multiple UAVs,
the localization precision is highly dependent on the shape
of the formation and on the UAV positions inside of it.

It is also possible to utilize a multi-robot SLAM algorithm
and thus obtain the relative UAV positions through map
merging and inter-robot loop closures. Various multi-robot
SLAM approaches have been proposed utilizing, e.g., LiDAR
data [24], stereo camera data [25], or monocular camera
data [26]. However, the multi-robot SLAM approaches re-
quire sending a large amount of data (sensor data, par-
tial maps, etc.) over the communication network and lack
reliability. Some of the multi-robot SLAMs also require
to employ a ground station for computations, but we aim
for running all of the algorithms in real time onboard the
computationally-constrained UAV platforms.

The relative localization approach employed in this paper
is built upon a markerless 3D LiDAR-based localization
solution originally designed in our team for detection of
non-cooperating intruder UAVs [27]. Contrary to the vision-
based approaches, it is able to accurately obtain the 3D
relative position between the UAVs without knowing the
exact size of the other UAV and without any markers on the
secondary UAV. Furthermore, it is robust to low visibility
conditions due to the nature of the LiDAR sensor. The
approach does not require any additional hardware onboard
either of the UAVs apart from the 3D LiDAR that is already
used for SLAM of the primary UAV. Additionally, this
approach does not pose any additional computational nor
communicational requirements on the secondary UAV other
than the ability to receive position commands. To the best
of our knowledge, our technique presents the first UAV
cooperative navigation and guidance approach based on 3D
LiDAR relative localization for indoor environments.

B. Notations

Let xBA be the vector describing the position of the origin
of the coordinate frame {A} in frame {B}. Let RBA ∈ SO(3)
be a rotation matrix describing the rotation from frame {A}
to frame {B}. We denote

TBA =

[
RBA xBA
0T 1

]
∈ SE(3) (1)

as the transformation matrix from frame {A} to frame {B}.
Let gA be a vector of the goal position in frame {A}.
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Fig. 2: Outline of the cooperative navigation and guidance
problem. {W} denotes the global world frame of reference.
Frames {P} and {S} correspond to the FCUs of the primary
and secondary UAV, respectively. The primary UAV is local-
ized by a LiDAR SLAM algorithm in the local frame {L},
while the secondary UAV is localized by a VIO algorithm
in the local frame {V}. gLin denotes the input goal position
defined in the frame {L} and gVout is the transformed goal
position used in closed-loop control of the secondary UAV.

C. Problem statement

In this paper, we tackle the problem of cooperative nav-
igation and guidance of a micro-scale aerial vehicle with
limited sensory setup using onboard sensors of a better
equipped UAV in the team. One of the UAVs, called the
primary UAV, is equipped with a 3D LiDAR. The other
UAV, called the secondary UAV, is smaller in size and is
equipped with a monocular camera and an IMU. Both of
these UAVs are equipped with an onboard computer, a wire-
less communication module, a Flight Controller Unit (FCU)
with an embedded attitude controller, and an IMU. The UAVs
operate in indoor GNSS-denied environment with no external
localization system. All the algorithms run entirely onboard
the UAVs with no external computational resources. The
UAVs are able to communicate over a wireless network and
the primary UAV is able to send position commands to the
secondary UAV.

The navigation problem is illustrated in Fig. 2. The frame
of reference {P} corresponds to the FCU of the primary
UAV and frame {S} corresponds to the FCU of the sec-
ondary UAV. 3D pose of the primary UAV in the local
frame {L} is obtained using a LiDAR SLAM algorithm
running onboard the primary UAV. Similarly, 3D pose of the
secondary UAV in {V} is obtained using a VIO algorithm
running onboard the secondary UAV. The global world frame
is denoted by {W}.

The task tackled in this paper is to guide the secondary
UAV {S} to the goal point gLin given in the local LiDAR
SLAM frame {L}. The goal point is transformed to the point
gVout in the local VIO frame {V} using the output of the
relative localization.

The relative transformation between the two UAVs is
subject to the success of the detection, to delay and to



variable rate caused by the LiDAR data processing speed
and wireless communication channel properties. The self-
localization output of the secondary UAV {S} in the local
VIO frame {V} utilized in the position control loop of the
secondary UAV is subject to inaccuracies. The inaccuracies
have the form of long-term drift of the frame {V} with
respect to the world frame {W} and LiDAR SLAM frame
{L} and scale of the frame {V} differing from the real-
world metric scale of frame {W}. The rate of the com-
munication commands being sent from the primary UAV
to the secondary UAV is subject to changes depending on
the reliability of the wireless communication channel. Due
to these real-world factors influencing the navigation output,
the goal points gLin and gVout do not coincide in the global
world frame {W} and the resulting control error needs to be
mitigated through feedback control.

We assume that the orientation of the secondary UAV is
a priori-known and constant over the course of the guiding
process. The goal positions gLin in the local LiDAR SLAM
frame {L} are passed to the primary UAV by any high-level
planning algorithm or a human operator.

II. MULTI-UAV SYSTEM ARCHITECTURE

A block diagram of the proposed cooperative navigation
and guidance approach can be seen in Fig. 3. The primary
UAV navigates through the environment based on the LiDAR
data. Simultaneously, the primary UAV detects the secondary
UAV from the LiDAR scans and tracks its movement.
Goal points for the secondary UAV can be generated by
a higher-level planning algorithm running on the primary
UAV or by a human operator based on the LiDAR data.
The primary UAV sends position commands to the secondary
UAV over a wireless network. The primary and secondary
UAVs together form a feedback loop controlling the position
of the secondary UAV.

A. LiDAR-based relative UAV localization

The LiDAR-based relative localization approach is an
extension of our previous work on UAV detection that was
originally designed for autonomous interception of non-
cooperating intruder UAVs [27]. The method consists of two
modules: a UAV detector and a UAV tracker. A brief descrip-
tion of the detection and tracking algorithms is presented
in this section, as a more detailed discussion is beyond the
scope of this paper.

1) UAV detector: The detection algorithm utilizes the
LiDAR data to estimate an occupancy voxel map of the
environment where each voxel’s value represents a confi-
dence that the voxel contains either a background object
or free air. This voxel map is estimated similarly as in
common 3D mapping algorithms such as the UFOMap [29]
but taking into account dynamic flying objects. Points from
each LiDAR scan are raycasted from the LiDAR sensor’s
origin and the free-air likelihood of the intersected voxels
is increased. Then, the points are separated into clusters
based on their mutual Euclidean distance. Clusters closer to
a high-confidence background voxel than a certain threshold

are used to update the map by increasing the background
likelihood of all voxels containing the corresponding points.
Each remaining cluster is then either classified as a flying
object if it is surrounded with high-confidence free-air voxels
or it is discarded as unknown. 3D positions of the detected
flying objects are the output of this algorithm.

2) UAV tracker: The UAV tracker serves to compensate
the non-negligible delay of the UAV detector, improve posi-
tion estimation of the target, and filter out potential sporadic
false positives. For this purpose, the tracker keeps a buffer
of N latest LiDAR scans and a set of current tracks that
is updated using a Kalman Filter-based multi-target tracking
approach with a motion model of the target.

Each input detection initializes a new track that is propa-
gated from the corresponding scan in the buffer to the latest
one. For each consecutive scan, the points in the scan are
separated into Euclidean clusters. The latest voxel map from
the UAV detector is used to reject clusters belonging to
background objects. Then, the cluster closest to the track
is used to update the track if it is closer than a certain
threshold. Specifically, the cluster is used as a measurement
for the Kalman Filter to update the track’s position and
velocity estimates. When the track is propagated to the latest
LiDAR scan, it is either added to a set of current tracks or
merged with a similar track from the set based on a similarity
threshold.

The same approach is used to update the set of current
tracks with new incoming LiDAR scans. After every update,
the most confident track (with the smallest determinant of
its covariance matrix) is outputted as the selected target.
Similarly, low-confidence tracks are discarded. The output of
the UAV tracker is the estimated position of the secondary
UAV xLS in the LiDAR SLAM frame {L}.

B. Target position transformation

The goal point gLin is generated onboard the primary
UAV by high-level planning. The UAV guider calculates the
transformation TSL from the LiDAR SLAM frame {L} to
the secondary UAV frame {S} as

TSL =

[
RSL xSL
0T 1

]
, (2)

where RSL is a rotation matrix calculated from zero pitch,
zero roll, and known heading of the secondary UAV. xLS
is the detected 3D position of the secondary UAV. The
rate of the secondary UAV detections can vary, e.g., due
to proximity of obstacles. Furthermore, the transformations
can be delayed due to the processing time of the LiDAR
data. Therefore, the transformations are stored in a buffer
and are discarded if their age exceeds a predefined threshold.
Transformations at the specific requested time between two
available transformations in the buffer are calculated through
linear interpolation by the Robot Operating System (ROS) tf2
library1.

1http://wiki.ros.org/tf2

http://wiki.ros.org/tf2
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Fig. 3: Diagram of the proposed cooperative navigation approach. The primary UAV tracks the position of the secondary
UAV from LiDAR data and sends position commands to the secondary UAV over wireless network. Movement of the
UAV pair is planned onboard the primary UAV. Position control in the frame of each respective self-localization method is
provided by the MRS UAV System [28].

The goal point is transformed to the frame of the sec-
ondary UAV as

gSout = TSLg
L
in (3)

and the resulting 3D position is sent to the secondary UAV
over the wireless network. The goal point gSout is repeatedly
transmitted to the secondary UAV to account for possible loss
of communication. At the secondary UAV, the goal point is
received by the Goal receiver module, where the age of the
goal point is checked to account for the goal point arriving
out of order or arriving multiple times. Afterward, the goal
point is transformed to the point gVout based on the VIO
self-localization output and is passed to the position control
pipeline of the secondary UAV.

C. UAV position control pipeline

The position control pipeline used for guiding the UAVs
to target positions specified in the frames of their respec-
tive self-localization method is provided by the MRS UAV
System. This section briefly describes the specific compo-
nents employed in our cooperative navigation approach. For
more details, we refer the reader to the MRS UAV System
paper [28].

The trajectory generation submodule generates a time-
parametrized trajectory given a set of waypoints. The em-
ployed approach is based on the polynomial trajectory
planning method described in [30]. The Reference tracker
generates a smooth and feasible full-state reference for the
feedback controllers using feedforward linear Model Predic-

tive Control (MPC). The SE(3) controller is a geometric
tracking feedback controller based on the method proposed
in [31] that outputs desired angular rate and total thrust
of the UAV. The attitude controller is implemented on the
embedded flight controller and tracks the desired angular rate
and total thrust and outputs commands to the electronic speed
controllers of the UAV actuators.

The SLAM submodule encapsulates the LiDAR-based
SLAM algorithm providing self-localization for the primary
UAV. In the experimental evaluation shown in this paper,
the LOAM SLAM algorithm [32] was employed. The VIO
submodule represents the monocular VIO method used for
onboard self-localization of the secondary UAV. In the
experimental evaluation, the VINS-Mono algorithm [33] was
utilized.

III. EXPERIMENTAL VERIFICATION

Video of the performed experiments is available online2.

A. Simulations

The performance of the proposed cooperative navigation
approach was extensively evaluated in computer simulations
utilizing the Gazebo robotic simulator. The simulations were
performed in the Urban 2 Story3 indoor environment from
OpenRobotics (see Fig. 4). The proposed approach was

2http://mrs.felk.cvut.cz/icuas2022-coop
3https://app.ignitionrobotics.org/OpenRobotics/

fuel/models/Urban2Story

http://mrs.felk.cvut.cz/icuas2022-coop
https://app.ignitionrobotics.org/OpenRobotics/fuel/models/Urban 2 Story
https://app.ignitionrobotics.org/OpenRobotics/fuel/models/Urban 2 Story


Fig. 4: The UAVs flying through the simulated environment.
The primary UAV followed a line trajectory while simultane-
ously guiding the secondary UAV to complete a surrounding
rectangular trajectory (see Fig. 5).

evaluated in its full extent. The primary UAV carried a
simulated 3D LiDAR with the same parameters as the one
employed in the real-world experimental evaluation. The
LiDAR data were utilized both in closed-loop control of the
primary UAV and for relative localization of the secondary
UAV. The secondary UAV carried a simulated fisheye camera
with an attached IMU. The camera data were utilized by the
VINS-Mono algorithm for self-localization and consequently
for use in the closed-loop control of the secondary UAV.

During each simulation, the primary UAV was flying back
and forth in a straight-line trajectory. Simultaneously, the
primary UAV guided the secondary UAV to fly through
waypoints defined in the LiDAR SLAM frame, forming a
rectangular trajectory around the primary UAV. The heading
and altitude of the UAVs were kept constant during the
flights. During each run of the simulation, the secondary
UAV was tasked to complete the rectangular trajectory 10
times. The trajectory traversed by the UAVs during one
of the simulation runs can be seen in Fig. 5. The initial
positions of the trajectories in different frames of reference
were aligned to the initial ground truth position. The LiDAR
relative localization corresponded to the ground truth position
without exhibiting any drift. On the contrary, the VIO
output exhibited long-term drift in the direction of the x-
axis. Nevertheless, the secondary UAV correctly followed
the target rectangular trajectory without being influenced by
the VIO drift as it was guided using the LiDAR relative
localization. The simulated run was performed 100 times.
The secondary UAV successfully performed the desired 10
loops of the rectangular trajectory in 95 runs. During 5 of the
simulated runs, the simulation ended early due to a failure
of the VIO self-localization.

Fig. 6 shows the progression of Root Mean Squared
Error (RMSE) of the VIO and LiDAR relative localization
over time. The RMSE was calculated from the 95 suc-
cessful flights using Euclidean distance of the outputs of
the respective localization methods from the ground truth.
To calculate the RMSE value at a specific timestep, the
Euclidean distances at such timestep were averaged over
all the simulation runs. The 2D RMSE was calculated in
the xy-plane only while the 3D RMSE utilized the full 3D
Euclidean distance. The VIO-LiDAR 3D distance in the third
plot was calculated as the Euclidean distance of VIO output
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Fig. 5: Trajectories traversed by the UAVs during one of the
simulations. The primary UAV followed the line trajectory in
the center and guided the secondary UAV through waypoints
on the surrounding rectangular trajectory. The LiDAR rela-
tive localization correctly tracked the secondary UAV while
the VIO output exhibited long-term drift in the direction of
the x-axis.

from the LiDAR relative localization output averaged over all
simulation runs at each respective timestep. The VIO output
exhibited linearly-growing long-term drift while the RMSE
of the LiDAR relative localization stayed approximately
constant. The overall 2D RMSE of the LiDAR localization
was 0.13m and its overall 3D RMSE was 0.34m. The 3D
RMSE of LiDAR relative localization was larger than the
2D RMSE as the tilting of the primary UAV, combined with
the measurement delay caused by LiDAR data processing,
decreased the localization precision along the z-axis.

B. Real-world experiments

The UAV platforms employed in the real-world experi-
mental evaluation can be seen in Fig. 7. The primary UAV
is built upon the Tarot 650 frame and carries the Intel
NUC 10i7FNK onboard computer with the Intel Core i7
10710U CPU, 16 GB of RAM, and with a wi-fi module.
The secondary UAV carries the Intel NUC 10i7FNH with the
same CPU and RAM size. Both UAVs carry the Pixhawk 4
FCU which contains the embedded attitude controller along
with a built-in IMU. The primary UAV carries the Ouster
OS0-128 3D LiDAR. The LiDAR has a 360◦ horizontal and
90◦ vertical FOV. The LiDAR produces scans at the rate of
10Hz. The scans have a resolution of 1024 × 128 beams
covering the entire FOV. The secondary UAV carries the
front-facing Bluefox MLC200Wc camera with the DSL217
fisheye lens. The camera is rigidly connected to the ICM-
42688-P IMU. The camera is set to produce images at the
rate of 30Hz at 752 × 480 resolution. The VINS-Mono
algorithm is configured to process the images at the rate of
10Hz and the IMU at the rate of 1000Hz.

The software running onboard the UAVs is based on
Ubuntu 20.04, ROS middleware, and the MRS UAV sys-
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Fig. 6: Comparison of the RMSE progression over time of
VIO and LiDAR relative localization calculated from the
the successful simulated flights. The VIO exhibited linearly
growing long-term drift while the RMSE of LiDAR relative
localization stayed approximately constant.

(a) (b)

Fig. 7: The UAV platforms employed in the real-world ex-
periments: (a) Primary UAV carrying the Ouster 3D LiDAR,
(b) Secondary UAV with the monocular camera.

Secondary UAV

Fig. 8: Experimental evaluation of flight between obstacles.
The primary UAV guided the secondary UAV to pass through
a gap between two rectangular panels.
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Fig. 9: UAV trajectories in an experiment with both UAVs
moving. The primary UAV guided the secondary UAV to
positions supplied by human operator and defined in the
LiDAR SLAM frame.

tem4 [28]. Nimbro network5 is employed for transporting
the ROS topics and services over the wireless network.

During the performed real-world experimental verification,
all the algorithms ran completely onboard the UAVs and no
external localization system was utilized. The experiments
were performed in a large indoor arena as shown in Fig. 1
and Fig. 8. During the real-world experiments, the target
heading and altitude of the secondary UAV were predefined
in the local VIO frame.

1) Both UAVs moving: The first experimental trial was
performed in an area without obstacles with both UAVs
moving. Both UAVs were flying to target positions selected
by human operators. The target positions for both UAVs were
selected in the frame of the LiDAR SLAM algorithm of
the primary UAV. The primary UAV simultaneously flew
to its target positions, tracked the secondary UAV, and sent
transformed target positions to the secondary UAV.

The trajectories traversed by the UAVs are shown in
Fig. 9. During the flight, the primary UAV kept changing
its position, altitude, and heading. The secondary UAV was
successfully guided to the target positions. Fig. 10 shows
a comparison of the VIO and LiDAR relative localization
outputs along with the goal positions. The figure also shows
the 3D distance between the outputs of VIO and LiDAR
relative localization calculated at each point over time during
the experiment. The VIO output gradually drifted away
from the LiDAR localization output. The sharp peaks in the
distance are caused by measurement delay due to LiDAR
processing and mitigating them is a subject of future work.

2) Square trajectory at higher speed: The second experi-
ment evaluated the ability to guide the secondary UAV along
a square trajectory at higher velocity. The primary UAV
was placed on the ground while it guided the secondary
UAV to perform the flight. During this flight, the secondary
UAV reached peak velocity of approximately 1.5m s−1 while
in the other real-world experiments, the peak velocity was
approximately 1.1m s−1 (calculated from the VIO self-
localization output). Fig. 11 displays the traversed trajectory.

4https://github.com/ctu-mrs/mrs_uav_system
5https://github.com/AIS-Bonn/nimbro_network

https://github.com/ctu-mrs/mrs_uav_system
https://github.com/AIS-Bonn/nimbro_network


100 150 200 250 300 350 400 450

Time [s]

5

10

15

x
[m

]

LiDAR VIO Goal position

100 150 200 250 300 350 400 450

Time [s]

−2

0

2

4

y
[m

]

LiDAR VIO Goal position

100 150 200 250 300 350 400 450

Time [s]

1

2

3

z
[m

]

LiDAR VIO

100 150 200 250 300 350 400 450

Time [s]

0.0

0.5

1.0

1.5

2.0

D
is

ta
n

ce
[m

]

VIO-LiDAR 3D distance

Fig. 10: Comparison of VIO and LiDAR relative localization
outputs along with goal positions of the secondary UAV
from the experiment with both UAVs moving. The primary
UAV successfully guided the secondary UAV to the target
positions even though the VIO output exhibited significant
drift.
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Fig. 11: UAV trajectory from the experiment evaluating
square trajectory following at higher velocity. The primary
UAV stood on the ground while the secondary UAV was
flying in the air.
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Fig. 12: Comparison of VIO and LiDAR relative localization
outputs from the experiment evaluating square trajectory fol-
lowing at higher velocity. The secondary UAV successfully
performed the target trajectory. The sharp peaks in the VIO-
LiDAR 3D distance are caused by delay due to LiDAR
processing time.

Fig. 12 displays the comparison of VIO and LiDAR rela-
tive localization outputs. The secondary UAV successfully
performed the desired trajectory.

3) Flight between obstacles: In the final experiment, the
primary UAV was hovering in place and simultaneously
guided the secondary UAV to pass between a pair of ob-
stacles three times (see Fig. 8). The target positions for
the secondary UAV were predefined in the LiDAR SLAM
frame of the primary UAV. Fig. 13 shows the trajectories
traversed by the UAV during the experiment and Fig. 14
shows the comparison of localization outputs. The VIO and
LiDAR relative localization outputs drifted apart during the
flight between the obstacles. Nevertheless, the secondary
UAV successfully performed the maneuver. This experiment
evaluated the performance of the proposed approach in
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Fig. 13: UAV trajectories from the flight between obstacles.
The primary UAV guided the secondary UAV to pass through
a gap between two rectangular panels.

close proximity of obstacles. The LiDAR relative localization
method successfully tracked the secondary UAV throughout
the entire flight.

C. Results summary

Both simulations and real-world experiments have shown
that the LiDAR relative localization outperforms the VIO
self-localization in terms of accuracy, as it is not influenced
by the detrimental factors inherent to visual self-localization
methods. The relative localization was successfully utilized
for precisely guiding the secondary UAV even when the pri-
mary UAV was moving and in close proximity of obstacles.
The real-world data corresponded to the simulation results
demonstrating the drift of VIO positions from the LiDAR
relative localization output (see Fig. 6 and Fig. 10). In the
flight near obstacles, the VIO output drifted more than 1m
away from the LiDAR position (see Fig. 13). Such significant
drift may lead to a collision if the UAV was not guided
by the proposed approach. In all real-world experiments,
the proposed approach successfully tracked the secondary
UAV and provided estimates of its position at the rate of
10Hz, corresponding to the scanning rate of the 3D LiDAR.
The accuracy of LiDAR relative localization was influenced
by the measurement delay caused by LiDAR processing
time. Mitigating the effects of this delay is a subject of
future work. Future work will also focus on the estimation
of relative orientation between the localization outputs and
fusion of LiDAR detections with the VIO output to remove
the simplifying assumptions of the current approach.

IV. CONCLUSIONS

A novel approach for cooperative navigation and guidance
of a micro-scale aerial vehicle by an accompanying UAV
using 3D LiDAR relative localization was proposed in this
paper. The 3D LiDAR provides rich data for robust UAV self-
localization and environment perception. However, it needs
to be carried by a relatively large UAV platform due to
its weight. On the contrary, a monocular visual camera is
cheap, light-weight, and therefore ideal for a small payload-
constrained UAV. The proposed approach combines the
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Fig. 14: Comparison of VIO and LiDAR relative localization
outputs from the flight between obstacles. The secondary
UAV successfully performed the desired trajectory even
though the VIO output drifted during the flight.

advantages of both types of sensors to create a heterogeneous
UAV team capable of robust navigation and at the same
time capable of flight through constrained environments. 3D
LiDAR data are used for markerless relative localization
between the two UAVs to enable precise guidance of the
secondary UAV in the frame of reference of the accurate
LiDAR SLAM. The proposed approach was extensively
evaluated in simulations and multiple real-world experiments
with the algorithms running completely onboard the UAVs
with no external localization infrastructure. The experiments
showed the superior precision of the LiDAR relative local-
ization when compared to the VIO outputs and successfully
demonstrated the ability to guide the secondary UAV to target
positions defined in the LiDAR SLAM frame of reference.
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